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Ray paths and gravitational lensing

As usual in raytracing, each sample (pixel) in the image corresponds to a path
starting from the position p0 = (x0, y0, z0) of the camera, initially travelling
to a direction d0 ∈ R3 specified by the camera coordinate system. The path
represents photons arriving to the camera from that direction. Instead of
traveling in straight lines until hitting an object, the paths solve the photonic
geodesic equation in the Schwarzschild space-time, which in certain units and
spherical coordinates (t, r, θ, φ) takes the form (cf. [1, §4.2.1])

ds2 =

(
1− 1

r

)
dt2 +

(
1− 1

r

)−1
dr2 − r2(dθ2 − sin2 θ · dφ2) = 0.

Without loss of generality, one can fix θ = π
2

and, even though not very
obviously (see, e.g., [3] and [2]), this gives the ordinary differential equation

u′′(φ) = −u(φ)

(
1− 3

2
u2(φ)

)
, (1)

for u := 1/r. To solve it in the raytracer, I use the initial conditions

u(0) =
1

‖p0‖
, u′(0) = −u(0)

d0 · n
d0 · t

,

where

n =
p0

‖p0‖
and t =

(n× d0)× n

‖(n× d0)× n‖
. (2)

span the plane in which the ray travels.
Equation (equation1) is integrated using the Leapfrog method until either

a maximum number of steps N is reached or uj+∆uj < 0, which signals that
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the ray escapes at an angle φ ∈ (φj, φj + ∆φj). Given φ and u, the corre-
sponding spatial coordinates p = (x, y, z) can be computed from (equation2)
as

p = (n cosφ+ t sinφ) /u.

The Schwarzschild time coordinate t is resolved by amending the numerical
integration with

t′(φ) = −
√

(u′)2 + u2(1− u)

u2(1− u)
,

which is needed to compute light travel times for simulating apparent posi-
tions of moving objects. In order to do the integration in a visually accurate
way, the step size ∆φj is varied using an ad hoc formula, in addition to using
the classical approximation dt2 ≈ dx2 + dy2 + dz2 at large distances r from
the black hole.

When the observer is moving with velocity v w.r.t. the Schwarzschild co-
ordinate system, the ray directions d in the coordinate system of the observer
(the camera coordinate system) are transformed by relativistic aberration,
which is corresponds to the Lorentz velocity transformation

d0 =
1

1 + vd‖

(
(d‖ + v)v0 +

1

γ
d⊥

)
where v = v0v, d‖ = v0 · d, d⊥ = d− d‖ and

γ =
1√

1− v2
. (3)

Circular orbits

The observer (unless stationary) and the planet both move on circular orbits
with angular velocities given by [2]

dφ

dt
=

1

r
√

2(r − 1)
. (4)

On such orbits, the time dilation of the observer relative to the planet is
computed by updating the t-coordinate as

∆t =

√
(∆t0)2(1− v2)

1− 1
r

,

where ∆t0 is the elapsed wall clock time between consecutive animation
frames and v = rdφ/dt.
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When computing intersection between the planet and light paths, the
motion of the planet has to be taken into account. Within the ODE inte-
gration steps, a ray-sphere intersection model can be used after mapping the
ray to the moving coordinate system of the planet using a Lorentz velocity
transformation.

Doppler shift and beaming

The Doppler factor for light arriving to the observer from direction d, emitted
by a source moving at velocity v is [1, §1.7]

δ = γ(1 + d · v), (5)

where γ is the Lorentz factor (equation3). The Doppler factor for a ray path
connecting a moving light source and a moving observer can be computed as

δ = δoδs = γoγs(1− do · vo)(1 + ds · vs),

where do and ds are the initial and final (at intersection with the light source)
photon directions on the ray path. The velocities vo and vs of the observer
and the source can be determined by (equation4). All of these are given in
the “stationary” Schwarzschild coordinate system. For the accretion disk,
the velocity vs is computed assuming the disk consists of glowing matter
moving in circular orbits given by (equation4).

The wavelengths of the emitted and observed light are related by λo = δλs
and intensities by I(λo) = δ−3I(λs) [1]. The change in intensity is called
relativistic beaming and the change in wavelength is Doppler shift, which is
also commonly referred to as redshift (when δ > 1) or blueshift (δ < 1).

The perceived (RGB) colors corresponding to any fixed spectrum I can
be precomputed in a one-dimensional lookup table (texture) as a function
of the Doppler factor. This is done by integrating the shifted spectra with
respect to the standard CIE color sensitivity measures [4]. The spectra used
for the colors in this simulation are the black-body spectrum

I(λ) ∝ 2hc2

λ5
1

e
hc

λkBT − 1

and hydrogen-α: I(λ) ∝ δ656.281nm(λ).
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